Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(57): 86859-86872, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35802332

RESUMO

In this study, luminescent bio-adsorbent nitrogen-doped carbon dots (N-CDs) was produced and applied for the removal and detection of Hg (II) from aqueous media. N-CDs were synthesized from oil palm empty fruit bunch carboxymethylcellulose (CMC) and urea. According to several analytical techniques used, the obtained N-CDs display graphitic core with an average size of 4.2 nm, are enriched with active sites, stable over a wide range of pH and have great resistance to photobleaching. The N-CDs have bright blue emission with an improved quantum yield (QY) of up to 35.5%. The effect of the variables including pH, adsorbent mass, initial concentration and incubation time on the removal of Hg (II) was investigated using central composite design. The statistical results confirmed that the adsorption process could reach equilibrium within 30 min. The reduced cubic model (R2 = 0.9989) revealed a good correlation between the observed values and predicted data. The optimal variables were pH of 7, dose of 0.1 g, initial concentration of 100 mg/L and duration of 30 min. Under these conditions, adsorption efficiency of 84.6% was obtained. The adsorption kinetic data could be well expressed by pseudo-second-order kinetic and Langmuir isotherm models. The optimal adsorption capacity was 116.3 mg g-1. Furthermore, the adsorbent has a good selectivity towards Hg (II) with a detection limit of 0.01 µM due to the special interaction between Hg (II) and carboxyl/amino groups on the edge of N-CDs. This work provided an alternative direction for constructing low-cost adsorbents with effective sorption and sensing of Hg (II).


Assuntos
Mercúrio , Pontos Quânticos , Poluentes Químicos da Água , Adsorção , Carbono/química , Nitrogênio/química , Biomassa , Poluentes Químicos da Água/análise , Mercúrio/análise , Cinética , Pontos Quânticos/química
2.
RSC Adv ; 10(25): 14979-14990, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35497143

RESUMO

The valorization of cellulose-based waste is of prime significance to green chemistry. However, the full exploitation of these lignocellulosic compounds to produce highly luminescent nanoparticles under mild conditions has not yet been achieved. In this context, we convert low-quality waste into value-added nanomaterials for the removal of Cu(ii) from wastewater. Carboxymethylcellulose (CMC), which was derived from empty fruit bunches, was selected for its high polymerization index to produce luminescent nitrogen-doped carbon dots (N-CDs) with the assistance of polyethylene glycol (PEG) as a dopant. The optimum N-CD sample with the highest quantum yield (QY) was characterized using various analytical techniques and the results show that the N-CDs have great crystallinity, are enriched with active sites and exhibit a long-shelf life with an enhanced QY of up to 27%. The influence of Cu2+ concentration, adsorbent (N-CDs) dosage, pH and contact time were investigated for the optimal adsorption of Cu2+. The experiments showed the rapid adsorption of Cu2+ within 30 min with a removal efficiency of over 83% under optimal conditions. The equilibrium isotherm investigation revealed that the fitness of the Langmuir isotherm model and kinetic data could be well explained by the pseudo-second order model. Desorption experiments proved that N-CDs can be regenerated successfully over five adsorption-desorption cycles owing to the ability of ascorbic acid (AA) to reduce the adsorbed nanocomplex into Cu+. The rapid adsorption property using low-cost materials identifies N-CDs as a superior candidate for water remedy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...